“DeepGestalt is a facial image analysis framework that is able to highlight similarities to hundreds of genetic disorders,” Yaron Gurovich, chief technology officer at FDNA, told Digital Trends. “It is a type of artificial intelligence that is able to efficiently learn the relevant visual appearances of genetic conditions, and provide relevancy scores for [them]. It is based on the recent machine learning tools, called deep learning. In practice, we use artificial neural networks to learn subtle patterns in the face and create a mathematical representation for those. DeepGestalt is like a mathematical aggregated representation of the knowledge of thousands [of] experts.”
To create their system, the researchers first taught it to identify faces using a general facial data set available on the web. They then used a technique called “transfer learning” to teach the machine to be able to stop genetic disorders. “This step is similar to teaching a human [a] new subject,” Gurovich continued. “Once you know the basics — [how to] analyze faces — it is much easier to learn special cases, [such as analyzing] genetic disorders.”
As noted, FDNA’s A.I. is already being used by clinicians in the form of a community platform called Face2Gene. This tool lets medics with permission from their patients upload images to the platform. Face2Gene is then able to help narrow down possible disease so that doctors can explore them further. An estimated 70 percent of clinical geneticists are reportedly using the tool.